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1

Preliminary algebra

This opening chapter reviews the basic algebra of which a working knowledge is

presumed in the rest of the book. Many students will be familiar with much, if

not all, of it, but recent changes in what is studied during secondary education

mean that it cannot be taken for granted that they will already have a mastery

of all the topics presented here. The reader may assess which areas need further

study or revision by attempting the exercises at the end of the chapter. The main

areas covered are polynomial equations and the related topic of partial fractions,

curve sketching, coordinate geometry, trigonometric identities and the notions of

proof by induction or contradiction.

1.1 Simple functions and equations

It is normal practice when starting the mathematical investigation of a physical

problem to assign an algebraic symbol to the quantity whose value is sought, either

numerically or as an explicit algebraic expression. For the sake of definiteness, in

this chapter we will use x to denote this quantity most of the time. Subsequent

steps in the analysis involve applying a combination of known laws, consistency

conditions and (possibly) given constraints to derive one or more equations

satisfied by x. These equations may take many forms, ranging from a simple

polynomial equation to, say, a partial differential equation with several boundary

conditions. Some of the more complicated possibilities are treated in the later

chapters of this book, but for the present we will be concerned with techniques

for the solution of relatively straightforward algebraic equations.

1.1.1 Polynomials and polynomial equations

Firstly we consider the simplest type of equation, a polynomial equation, in which

a polynomial expression in x, denoted by f(x), is set equal to zero and thereby

1



PRELIMINARY ALGEBRA

forms an equation which is satisfied by particular values of x, called the roots of

the equation:

f(x) = anx
n + an−1xn−1 + · · ·+ a1x+ a0 = 0. (1.1)

Here n is an integer > 0, called the degree of both the polynomial and the

equation, and the known coefficients a0, a1, . . . , an are real quantities with an �= 0.
Equations such as (1.1) arise frequently in physical problems, the coefficients ai

being determined by the physical properties of the system under study. What is

needed is to find some or all of the roots of (1.1), i.e. the x-values, αk , that satisfy

f(αk) = 0; here k is an index that, as we shall see later, can take up to n different

values, i.e. k = 1, 2, . . . , n. The roots of the polynomial equation can equally well

be described as the zeroes of the polynomial. When they are real, they correspond

to the points at which a graph of f(x) crosses the x-axis. Roots that are complex

(see chapter 3) do not have such a graphical interpretation.

For polynomial equations containing powers of x greater than x4 general

methods do not exist for obtaining explicit expressions for the roots αk . Even

for n = 3 and n = 4 the prescriptions for obtaining the roots are sufficiently

complicated that it is usually preferable to obtain exact or approximate values

by other methods. Only for n = 1 and n = 2 can closed-form solutions be given.

These results will be well known to the reader, but they are given here for the

sake of completeness. For n = 1, (1.1) reduces to the linear equation

a1x+ a0 = 0; (1.2)

the solution (root) is α1 = −a0/a1. For n = 2, (1.1) reduces to the quadratic

equation

a2x
2 + a1x+ a0 = 0; (1.3)

the two roots α1 and α2 are given by

α1,2 =
−a1 ±

√
a21 − 4a2a0
2a2

. (1.4)

When discussing specifically quadratic equations, as opposed to more general

polynomial equations, it is usual to write the equation in one of the two notations

ax2 + bx+ c = 0, ax2 + 2bx+ c = 0, (1.5)

with respective explicit pairs of solutions

α1,2 =
−b±√

b2 − 4ac
2a

, α1,2 =
−b±√

b2 − ac

a
. (1.6)

Of course, these two notations are entirely equivalent and the only important

2



1.1 SIMPLE FUNCTIONS AND EQUATIONS

point is to associate each form of answer with the corresponding form of equation;

most people keep to one form, to avoid any possible confusion.

If the value of the quantity appearing under the square root sign is positive

then both roots are real; if it is negative then the roots form a complex conjugate

pair, i.e. they are of the form p ± iq with p and q real (see chapter 3); if it has

zero value then the two roots are equal and special considerations usually arise.

Thus linear and quadratic equations can be dealt with in a cut-and-dried way.

We now turn to methods for obtaining partial information about the roots of

higher-degree polynomial equations. In some circumstances the knowledge that

an equation has a root lying in a certain range, or that it has no real roots at all,

is all that is actually required. For example, in the design of electronic circuits

it is necessary to know whether the current in a proposed circuit will break

into spontaneous oscillation. To test this, it is sufficient to establish whether a

certain polynomial equation, whose coefficients are determined by the physical

parameters of the circuit, has a root with a positive real part (see chapter 3);

complete determination of all the roots is not needed for this purpose. If the

complete set of roots of a polynomial equation is required, it can usually be

obtained to any desired accuracy by numerical methods such as those described

in chapter 28.

There is no explicit step-by-step approach to finding the roots of a general

polynomial equation such as (1.1). In most cases analytic methods yield only

information about the roots, rather than their exact values. To explain the relevant

techniques we will consider a particular example, ‘thinking aloud’ on paper and

expanding on special points about methods and lines of reasoning. In more

routine situations such comment would be absent and the whole process briefer

and more tightly focussed.

Example: the cubic case

Let us investigate the roots of the equation

g(x) = 4x3 + 3x2 − 6x− 1 = 0 (1.7)

or, in an alternative phrasing, investigate the zeroes of g(x). We note first of all

that this is a cubic equation. It can be seen that for x large and positive g(x)

will be large and positive and, equally, that for x large and negative g(x) will

be large and negative. Therefore, intuitively (or, more formally, by continuity)

g(x) must cross the x-axis at least once and so g(x) = 0 must have at least one

real root. Furthermore, it can be shown that if f(x) is an nth-degree polynomial

then the graph of f(x) must cross the x-axis an even or odd number of times

as x varies between −∞ and +∞, according to whether n itself is even or odd.
Thus a polynomial of odd degree always has at least one real root, but one of

even degree may have no real root. A small complication, discussed later in this

section, occurs when repeated roots arise.

3



PRELIMINARY ALGEBRA

Having established that g(x) = 0 has at least one real root, we may ask how

many real roots it could have. To answer this we need one of the fundamental

theorems of algebra, mentioned above:

An nth-degree polynomial equation has exactly n roots.

It should be noted that this does not imply that there are n real roots (only that

there are not more than n); some of the roots may be of the form p+ iq.

To make the above theorem plausible and to see what is meant by repeated

roots, let us suppose that the nth-degree polynomial equation f(x) = 0, (1.1), has

r roots α1, α2, . . . , αr , considered distinct for the moment. That is, we suppose that

f(αk) = 0 for k = 1, 2, . . . , r, so that f(x) vanishes only when x is equal to one of

the r values αk . But the same can be said for the function

F(x) = A(x− α1)(x− α2) · · · (x− αr), (1.8)

in which A is a non-zero constant; F(x) can clearly be multiplied out to form a

polynomial expression.

We now call upon a second fundamental result in algebra: that if two poly-

nomial functions f(x) and F(x) have equal values for all values of x, then their

coefficients are equal on a term-by-term basis. In other words, we can equate

the coefficients of each and every power of x in the two expressions (1.8) and

(1.1); in particular we can equate the coefficients of the highest power of x. From

this we have Axr ≡ anx
n and thus that r = n and A = an. As r is both equal

to n and to the number of roots of f(x) = 0, we conclude that the nth-degree

polynomial f(x) = 0 has n roots. (Although this line of reasoning may make the

theorem plausible, it does not constitute a proof since we have not shown that it

is permissible to write f(x) in the form of equation (1.8).)

We next note that the condition f(αk) = 0 for k = 1, 2, . . . , r, could also be met

if (1.8) were replaced by

F(x) = A(x− α1)
m1 (x− α2)

m2 · · · (x− αr)
mr , (1.9)

with A = an. In (1.9) the mk are integers ≥ 1 and are known as the multiplicities
of the roots, mk being the multiplicity of αk . Expanding the right-hand side (RHS)

leads to a polynomial of degree m1 +m2 + · · ·+mr . This sum must be equal to n.

Thus, if any of the mk is greater than unity then the number of distinct roots, r,

is less than n; the total number of roots remains at n, but one or more of the αk
counts more than once. For example, the equation

F(x) = A(x− α1)
2(x− α2)

3(x− α3)(x− α4) = 0

has exactly seven roots, α1 being a double root and α2 a triple root, whilst α3 and

α4 are unrepeated (simple) roots.

We can now say that our particular equation (1.7) has either one or three real

roots but in the latter case it may be that not all the roots are distinct. To decide
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x x

φ1(x) φ2(x)

β1 β1

β2

β2

Figure 1.1 Two curves φ1(x) and φ2(x), both with zero derivatives at the

same values of x, but with different numbers of real solutions to φi(x) = 0.

how many real roots the equation has, we need to anticipate two ideas from the

next chapter. The first of these is the notion of the derivative of a function, and

the second is a result known as Rolle’s theorem.

The derivative f′(x) of a function f(x) measures the slope of the tangent to
the graph of f(x) at that value of x (see figure 2.1 in the next chapter). For

the moment, the reader with no prior knowledge of calculus is asked to accept

that the derivative of axn is naxn−1, so that the derivative g′(x) of the curve
g(x) = 4x3 + 3x2 − 6x− 1 is given by g′(x) = 12x2 + 6x− 6. Similar expressions
for the derivatives of other polynomials are used later in this chapter.

Rolle’s theorem states that if f(x) has equal values at two different values of x

then at some point between these two x-values its derivative is equal to zero; i.e.

the tangent to its graph is parallel to the x-axis at that point (see figure 2.2).

Having briefly mentioned the derivative of a function and Rolle’s theorem, we

now use them to establish whether g(x) has one or three real zeroes. If g(x) = 0

does have three real roots αk , i.e. g(αk) = 0 for k = 1, 2, 3, then it follows from

Rolle’s theorem that between any consecutive pair of them (say α1 and α2) there

must be some real value of x at which g′(x) = 0. Similarly, there must be a further
zero of g′(x) lying between α2 and α3. Thus a necessary condition for three real

roots of g(x) = 0 is that g′(x) = 0 itself has two real roots.
However, this condition on the number of roots of g′(x) = 0, whilst necessary,

is not sufficient to guarantee three real roots of g(x) = 0. This can be seen by

inspecting the cubic curves in figure 1.1. For each of the two functions φ1(x) and

φ2(x), the derivative is equal to zero at both x = β1 and x = β2. Clearly, though,

φ2(x) = 0 has three real roots whilst φ1(x) = 0 has only one. It is easy to see that

the crucial difference is that φ1(β1) and φ1(β2) have the same sign, whilst φ2(β1)

and φ2(β2) have opposite signs.
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It will be apparent that for some equations, φ(x) = 0 say, φ′(x) equals zero
at a value of x for which φ(x) is also zero. Then the graph of φ(x) just touches

the x-axis. When this happens the value of x so found is, in fact, a double real

root of the polynomial equation (corresponding to one of the mk in (1.9) having

the value 2) and must be counted twice when determining the number of real

roots.

Finally, then, we are in a position to decide the number of real roots of the

equation

g(x) = 4x3 + 3x2 − 6x− 1 = 0.
The equation g′(x) = 0, with g′(x) = 12x2 + 6x− 6, is a quadratic equation with
explicit solutions§

β1,2 =
−3±√

9 + 72

12
,

so that β1 = −1 and β2 = 1
2
. The corresponding values of g(x) are g(β1) = 4 and

g(β2) = − 11
4
, which are of opposite sign. This indicates that 4x3+3x2−6x−1 = 0

has three real roots, one lying in the range −1 < x < 1
2
and the others one on

each side of that range.

The techniques we have developed above have been used to tackle a cubic

equation, but they can be applied to polynomial equations f(x) = 0 of degree

greater than 3. However, much of the analysis centres around the equation

f′(x) = 0 and this, itself, being then a polynomial equation of degree 3 or more
either has no closed-form general solution or one that is complicated to evaluate.

Thus the amount of information that can be obtained about the roots of f(x) = 0

is correspondingly reduced.

A more general case

To illustrate what can (and cannot) be done in the more general case we now

investigate as far as possible the real roots of

f(x) = x7 + 5x6 + x4 − x3 + x2 − 2 = 0.
The following points can be made.

(i) This is a seventh-degree polynomial equation; therefore the number of

real roots is 1, 3, 5 or 7.

(ii) f(0) is negative whilst f(∞) = +∞, so there must be at least one positive
root.

§ The two roots β1, β2 are written as β1,2. By convention β1 refers to the upper symbol in ±, β2 to
the lower symbol.
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(iii) The equation f′(x) = 0 can be written as x(7x5 + 30x4 + 4x2− 3x+2) = 0
and thus x = 0 is a root. The derivative of f′(x), denoted by f′′(x), equals
42x5 + 150x4 + 12x2 − 6x + 2. That f′(x) is zero whilst f′′(x) is positive
at x = 0 indicates (subsection 2.1.8) that f(x) has a minimum there. This,

together with the facts that f(0) is negative and f(∞) = ∞, implies that
the total number of real roots to the right of x = 0 must be odd. Since

the total number of real roots must be odd, the number to the left must

be even (0, 2, 4 or 6).

This is about all that can be deduced by simple analytic methods in this case,

although some further progress can be made in the ways indicated in exercise 1.3.

There are, in fact, more sophisticated tests that examine the relative signs of

successive terms in an equation such as (1.1), and in quantities derived from

them, to place limits on the numbers and positions of roots. But they are not

prerequisites for the remainder of this book and will not be pursued further

here.

We conclude this section with a worked example which demonstrates that the

practical application of the ideas developed so far can be both short and decisive.

For what values of k, if any, does

f(x) = x3 − 3x2 + 6x+ k = 0
have three real roots?

Firstly we study the equation f′(x) = 0, i.e. 3x2 − 6x+ 6 = 0. This is a quadratic equation
but, using (1.6), because 62 < 4 × 3 × 6, it can have no real roots. Therefore, it follows
immediately that f(x) has no maximum or minimum; consequently f(x) = 0 cannot have
more than one real root, whatever the value of k.

1.1.2 Factorising polynomials

In the previous subsection we saw how a polynomial with r given distinct zeroes

αk could be constructed as the product of factors containing those zeroes:

f(x) = an(x− α1)
m1 (x− α2)

m2 · · · (x− αr)
mr

= anx
n + an−1xn−1 + · · ·+ a1x+ a0, (1.10)

with m1 +m2 + · · ·+mr = n, the degree of the polynomial. It will cause no loss of

generality in what follows to suppose that all the zeroes are simple, i.e. all mk = 1

and r = n, and this we will do.

Sometimes it is desirable to be able to reverse this process, in particular when

one exact zero has been found by some method and the remaining zeroes are to

be investigated. Suppose that we have located one zero, α; it is then possible to

write (1.10) as

f(x) = (x− α)f1(x), (1.11)
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where f1(x) is a polynomial of degree n−1. How can we find f1(x)? The procedure
is much more complicated to describe in a general form than to carry out for

an equation with given numerical coefficients ai. If such manipulations are too

complicated to be carried out mentally, they could be laid out along the lines of

an algebraic ‘long division’ sum. However, a more compact form of calculation

is as follows. Write f1(x) as

f1(x) = bn−1xn−1 + bn−2xn−2 + bn−3xn−3 + · · ·+ b1x+ b0.

Substitution of this form into (1.11) and subsequent comparison of the coefficients

of xp for p = n, n− 1, . . . , 1, 0 with those in the second line of (1.10) generates
the series of equations

bn−1 = an,

bn−2 − αbn−1 = an−1,
bn−3 − αbn−2 = an−2,

...

b0 − αb1 = a1,

−αb0 = a0.

These can be solved successively for the bj , starting either from the top or from

the bottom of the series. In either case the final equation used serves as a check;

if it is not satisfied, at least one mistake has been made in the computation –

or α is not a zero of f(x) = 0. We now illustrate this procedure with a worked

example.

Determine by inspection the simple roots of the equation

f(x) = 3x4 − x3 − 10x2 − 2x+ 4 = 0
and hence, by factorisation, find the rest of its roots.

From the pattern of coefficients it can be seen that x = −1 is a solution to the equation.
We therefore write

f(x) = (x+ 1)(b3x
3 + b2x

2 + b1x+ b0),

where

b3 = 3,

b2 + b3 = −1,
b1 + b2 = −10,
b0 + b1 = −2,

b0 = 4.

These equations give b3 = 3, b2 = −4, b1 = −6, b0 = 4 (check) and so
f(x) = (x+ 1)f1(x) = (x+ 1)(3x

3 − 4x2 − 6x+ 4).
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We now note that f1(x) = 0 if x is set equal to 2. Thus x − 2 is a factor of f1(x), which
therefore can be written as

f1(x) = (x− 2)f2(x) = (x− 2)(c2x2 + c1x+ c0)
with

c2 = 3,

c1 − 2c2 = −4,
c0 − 2c1 = −6,

−2c0 = 4.
These equations determine f2(x) as 3x

2 + 2x− 2. Since f2(x) = 0 is a quadratic equation,
its solutions can be written explicitly as

x =
−1±√

1 + 6

3
.

Thus the four roots of f(x) = 0 are −1, 2, 1
3
(−1 +√

7) and 1
3
(−1−√

7).

1.1.3 Properties of roots

From the fact that a polynomial equation can be written in any of the alternative

forms

f(x) = anx
n + an−1xn−1 + · · ·+ a1x+ a0 = 0,

f(x) = an(x− α1)
m1 (x− α2)

m2 · · · (x− αr)
mr = 0,

f(x) = an(x− α1)(x− α2) · · · (x− αn) = 0,

it follows that it must be possible to express the coefficients ai in terms of the

roots αk . To take the most obvious example, comparison of the constant terms

(formally the coefficient of x0) in the first and third expressions shows that

an(−α1)(−α2) · · · (−αn) = a0,

or, using the product notation,

n∏
k=1

αk = (−1)n a0
an
. (1.12)

Only slightly less obvious is a result obtained by comparing the coefficients of

xn−1 in the same two expressions of the polynomial:
n∑

k=1

αk = −an−1
an

. (1.13)

Comparing the coefficients of other powers of x yields further results, though

they are of less general use than the two just given. One such, which the reader

may wish to derive, is

n∑
j=1

n∑
k>j

αjαk =
an−2
an

. (1.14)
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In the case of a quadratic equation these root properties are used sufficiently

often that they are worth stating explicitly, as follows. If the roots of the quadratic

equation ax2 + bx+ c = 0 are α1 and α2 then

α1 + α2 = −b

a
,

α1α2 =
c

a
.

If the alternative standard form for the quadratic is used, b is replaced by 2b in

both the equation and the first of these results.

Find a cubic equation whose roots are −4, 3 and 5.

From results (1.12) – (1.14) we can compute that, arbitrarily setting a3 = 1,

−a2 =
3

k=1

αk = 4, a1 =

3

j=1

3

k>j

αjαk = −17, a0 = (−1)3
3

k=1

αk = 60.

Thus a possible cubic equation is x3 + (−4)x2 + (−17)x+(60) = 0. Of course, any multiple
of x3 − 4x2 − 17x+ 60 = 0 will do just as well.

1.2 Trigonometric identities

So many of the applications of mathematics to physics and engineering are

concerned with periodic, and in particular sinusoidal, behaviour that a sure and

ready handling of the corresponding mathematical functions is an essential skill.

Even situations with no obvious periodicity are often expressed in terms of

periodic functions for the purposes of analysis. Later in this book whole chapters

are devoted to developing the techniques involved, but as a necessary prerequisite

we here establish (or remind the reader of) some standard identities with which he

or she should be fully familiar, so that the manipulation of expressions containing

sinusoids becomes automatic and reliable. So as to emphasise the angular nature

of the argument of a sinusoid we will denote it in this section by θ rather than x.

1.2.1 Single-angle identities

We give without proof the basic identity satisfied by the sinusoidal functions sin θ

and cos θ, namely

cos2 θ + sin2 θ = 1. (1.15)

If sin θ and cos θ have been defined geometrically in terms of the coordinates of

a point on a circle, a reference to the name of Pythagoras will suffice to establish

this result. If they have been defined by means of series (with θ expressed in

radians) then the reader should refer to Euler’s equation (3.23) on page 96, and

note that eiθ has unit modulus if θ is real.
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x

y

x′

y′

O

A

B

P

T

N

R

M

Figure 1.2 Illustration of the compound-angle identities. Refer to the main

text for details.

Other standard single-angle formulae derived from (1.15) by dividing through

by various powers of sin θ and cos θ are

1 + tan2 θ = sec2 θ, (1.16)

cot2 θ + 1 = cosec 2θ. (1.17)

1.2.2 Compound-angle identities

The basis for building expressions for the sinusoidal functions of compound

angles are those for the sum and difference of just two angles, since all other

cases can be built up from these, in principle. Later we will see that a study of

complex numbers can provide a more efficient approach in some cases.

To prove the basic formulae for the sine and cosine of a compound angle

A+B in terms of the sines and cosines of A and B, we consider the construction

shown in figure 1.2. It shows two sets of axes, Oxy and Ox′y′, with a common
origin but rotated with respect to each other through an angle A. The point

P lies on the unit circle centred on the common origin O and has coordinates

cos(A + B), sin(A + B) with respect to the axes Oxy and coordinates cosB, sinB

with respect to the axes Ox′y′.
Parallels to the axes Oxy (dotted lines) and Ox′y′ (broken lines) have been

drawn through P . Further parallels (MR and RN) to the Ox′y′ axes have been

11
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drawn through R, the point (0, sin(A+B)) in the Oxy system. That all the angles

marked with the symbol • are equal to A follows from the simple geometry of
right-angled triangles and crossing lines.

We now determine the coordinates of P in terms of lengths in the figure,

expressing those lengths in terms of both sets of coordinates:

(i) cosB = x′ = TN +NP =MR +NP

= OR sinA+ RP cosA = sin(A+ B) sinA+ cos(A+ B) cosA;

(ii) sinB = y′ = OM − TM = OM −NR

= OR cosA− RP sinA = sin(A+ B) cosA− cos(A+ B) sinA.
Now, if equation (i) is multiplied by sinA and added to equation (ii) multiplied

by cosA, the result is

sinA cosB + cosA sinB = sin(A+ B)(sin2 A+ cos2 A) = sin(A+ B).

Similarly, if equation (ii) is multiplied by sinA and subtracted from equation (i)

multiplied by cosA, the result is

cosA cosB − sinA sinB = cos(A+ B)(cos2 A+ sin2 A) = cos(A+ B).
Corresponding graphically based results can be derived for the sines and cosines

of the difference of two angles; however, they are more easily obtained by setting

B to −B in the previous results and remembering that sinB becomes − sinB
whilst cosB is unchanged. The four results may be summarised by

sin(A± B) = sinA cosB ± cosA sinB (1.18)

cos(A± B) = cosA cosB ∓ sinA sinB. (1.19)

Standard results can be deduced from these by setting one of the two angles

equal to π or to π/2:

sin(π − θ) = sin θ, cos(π − θ) = − cos θ, (1.20)

sin
(
1
2
π − θ

)
= cos θ, cos

(
1
2
π − θ

)
= sin θ, (1.21)

From these basic results many more can be derived. An immediate deduction,

obtained by taking the ratio of the two equations (1.18) and (1.19) and then

dividing both the numerator and denominator of this ratio by cosA cosB, is

tan(A± B) =
tanA± tanB
1∓ tanA tanB . (1.22)

One application of this result is a test for whether two lines on a graph

are orthogonal (perpendicular); more generally, it determines the angle between

them. The standard notation for a straight-line graph is y = mx+ c, in which m

is the slope of the graph and c is its intercept on the y-axis. It should be noted

that the slope m is also the tangent of the angle the line makes with the x-axis.
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Consequently the angle θ12 between two such straight-line graphs is equal to the

difference in the angles they individually make with the x-axis, and the tangent

of that angle is given by (1.22):

tan θ12 =
tan θ1 − tan θ2
1 + tan θ1 tan θ2

=
m1 − m2

1 + m1m2
. (1.23)

For the lines to be orthogonal we must have θ12 = π/2, i.e. the final fraction on

the RHS of the above equation must equal ∞, and so

m1m2 = −1. (1.24)

A kind of inversion of equations (1.18) and (1.19) enables the sum or difference

of two sines or cosines to be expressed as the product of two sinusoids; the

procedure is typified by the following. Adding together the expressions given by

(1.18) for sin(A+ B) and sin(A− B) yields

sin(A+ B) + sin(A− B) = 2 sinA cosB.

If we now write A+ B = C and A− B = D, this becomes

sinC + sinD = 2 sin

(
C + D

2

)
cos

(
C − D

2

)
. (1.25)

In a similar way each of the following equations can be derived:

sinC − sinD = 2 cos
(
C + D

2

)
sin

(
C − D

2

)
, (1.26)

cosC + cosD = 2 cos

(
C + D

2

)
cos

(
C − D

2

)
, (1.27)

cosC − cosD = −2 sin
(
C + D

2

)
sin

(
C − D

2

)
. (1.28)

The minus sign on the right of the last of these equations should be noted; it may

help to avoid overlooking this ‘oddity’ to recall that if C > D then cosC < cosD.

1.2.3 Double- and half-angle identities

Double-angle and half-angle identities are needed so often in practical calculations

that they should be committed to memory by any physical scientist. They can be

obtained by setting B equal to A in results (1.18) and (1.19). When this is done,
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and use made of equation (1.15), the following results are obtained:

sin 2θ = 2 sin θ cos θ, (1.29)

cos 2θ = cos2 θ − sin2 θ
= 2 cos2 θ − 1
= 1− 2 sin2 θ, (1.30)

tan 2θ =
2 tan θ

1− tan2 θ . (1.31)

A further set of identities enables sinusoidal functions of θ to be expressed

as polynomial functions of a variable t = tan(θ/2). They are not used in their

primary role until the next chapter, but we give a derivation of them here for

reference.

If t = tan(θ/2), then it follows from (1.16) that 1+t2 = sec2(θ/2) and cos(θ/2) =

(1 + t2)−1/2, whilst sin(θ/2) = t(1 + t2)−1/2. Now, using (1.29) and (1.30), we may
write:

sin θ = 2 sin
θ

2
cos

θ

2
=

2t

1 + t2
, (1.32)

cos θ = cos2
θ

2
− sin2 θ

2
=
1− t2

1 + t2
, (1.33)

tan θ =
2t

1− t2
. (1.34)

It can be further shown that the derivative of θ with respect to t takes the

algebraic form 2/(1 + t2). This completes a package of results that enables

expressions involving sinusoids, particularly when they appear as integrands, to

be cast in more convenient algebraic forms. The proof of the derivative property

and examples of use of the above results are given in subsection (2.2.7).

We conclude this section with a worked example which is of such a commonly

occurring form that it might be considered a standard procedure.

Solve for θ the equation

a sin θ + b cos θ = k,

where a, b and k are given real quantities.

To solve this equation we make use of result (1.18) by setting a = K cosφ and b = K sinφ
for suitable values of K and φ. We then have

k = K cosφ sin θ +K sinφ cos θ = K sin(θ + φ),

with

K2 = a2 + b2 and φ = tan−1
b

a
.

Whether φ lies in 0 ≤ φ ≤ π or in −π < φ < 0 has to be determined by the individual
signs of a and b. The solution is thus

θ = sin−1
k

K
− φ,
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with K and φ as given above. Notice that there is no real solution to the original equation
if |k| > |K| = (a2 + b2)1/2.

1.3 Coordinate geometry

We have already mentioned the standard form for a straight-line graph, namely

y = mx+ c, (1.35)

representing a linear relationship between the independent variable x and the

dependent variable y. The slope m is equal to the tangent of the angle the line

makes with the x-axis whilst c is the intercept on the y-axis.

An alternative form for the equation of a straight line is

ax+ by + k = 0, (1.36)

to which (1.35) is clearly connected by

m = −a

b
and c = −k

b
.

This form treats x and y on a more symmetrical basis, the intercepts on the two

axes being −k/a and −k/b respectively.
A power relationship between two variables, i.e. one of the form y = Axn, can

also be cast into straight-line form by taking the logarithms of both sides. Whilst

it is normal in mathematical work to use natural logarithms (to base e, written

ln x), for practical investigations logarithms to base 10 are often employed. In

either case the form is the same, but it needs to be remembered which has been

used when recovering the value of A from fitted data. In the mathematical (base

e) form, the power relationship becomes

ln y = n lnx+ lnA. (1.37)

Now the slope gives the power n, whilst the intercept on the ln y axis is lnA,

which yields A, either by exponentiation or by taking antilogarithms.

The other standard coordinate forms of two-dimensional curves that students

should know and recognise are those concerned with the conic sections – so called

because they can all be obtained by taking suitable sections across a (double)

cone. Because the conic sections can take many different orientations and scalings

their general form is complex,

Ax2 + By2 + Cxy + Dx+ Ey + F = 0, (1.38)

but each can be represented by one of four generic forms, an ellipse, a parabola, a

hyperbola or, the degenerate form, a pair of straight lines. If they are reduced to
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their standard representations, in which axes of symmetry are made to coincide

with the coordinate axes, the first three take the forms

(x− α)2

a2
+
(y − β)2

b2
= 1 (ellipse), (1.39)

(y − β)2 = 4a(x− α) (parabola), (1.40)

(x− α)2

a2
− (y − β)2

b2
= 1 (hyperbola). (1.41)

Here, (α, β) gives the position of the ‘centre’ of the curve, usually taken as

the origin (0, 0) when this does not conflict with any imposed conditions. The

parabola equation given is that for a curve symmetric about a line parallel to

the x-axis. For one symmetrical about a parallel to the y-axis the equation would

read (x− α)2 = 4a(y − β).

Of course, the circle is the special case of an ellipse in which b = a and the

equation takes the form

(x− α)2 + (y − β)2 = a2. (1.42)

The distinguishing characteristic of this equation is that when it is expressed in

the form (1.38) the coefficients of x2 and y2 are equal and that of xy is zero; this

property is not changed by any reorientation or scaling and so acts to identify a

general conic as a circle.

Definitions of the conic sections in terms of geometrical properties are also

available; for example, a parabola can be defined as the locus of a point that

is always at the same distance from a given straight line (the directrix) as it is

from a given point (the focus). When these properties are expressed in Cartesian

coordinates the above equations are obtained. For a circle, the defining property

is that all points on the curve are a distance a from (α, β); (1.42) expresses this

requirement very directly. In the following worked example we derive the equation

for a parabola.

Find the equation of a parabola that has the line x = −a as its directrix and the point
(a, 0) as its focus.

Figure 1.3 shows the situation in Cartesian coordinates. Expressing the defining requirement
that PN and PF are equal in length gives

(x+ a) = [(x− a)2 + y2]1/2 ⇒ (x+ a)2 = (x− a)2 + y2

which, on expansion of the squared terms, immediately gives y2 = 4ax. This is (1.40) with
α and β both set equal to zero.

Although the algebra is more complicated, the same method can be used to

derive the equations for the ellipse and the hyperbola. In these cases the distance

from the fixed point is a definite fraction, e, known as the eccentricity, of the

distance from the fixed line. For an ellipse 0 < e < 1, for a circle e = 0, and for a

hyperbola e > 1. The parabola corresponds to the case e = 1.
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x
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x = −a

(a, 0)

(x, y)

Figure 1.3 Construction of a parabola using the point (a, 0) as the focus and

the line x = −a as the directrix.

The values of a and b (with a ≥ b) in equation (1.39) for an ellipse are related

to e through

e2 =
a2 − b2

a2

and give the lengths of the semi-axes of the ellipse. If the ellipse is centred on

the origin, i.e. α = β = 0, then the focus is (−ae, 0) and the directrix is the line
x = −a/e.
For each conic section curve, although we have two variables, x and y, they are

not independent, since if one is given then the other can be determined. However,

determining y when x is given, say, involves solving a quadratic equation on each

occasion, and so it is convenient to have parametric representations of the curves.

A parametric representation allows each point on a curve to be associated with

a unique value of a single parameter t. The simplest parametric representations

for the conic sections are as given below, though that for the hyperbola uses

hyperbolic functions, not formally introduced until chapter 3. That they do give

valid parameterizations can be verified by substituting them into the standard

forms (1.39)–(1.41); in each case the standard form is reduced to an algebraic or

trigonometric identity.

x = α+ a cosφ, y = β + b sinφ (ellipse),

x = α+ at2, y = β + 2at (parabola),

x = α+ a coshφ, y = β + b sinhφ (hyperbola).

As a final example illustrating several topics from this section we now prove
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the well-known result that the angle subtended by a diameter at any point on a

circle is a right angle.

Taking the diameter to be the line joining Q = (−a, 0) and R = (a, 0) and the point P to
be any point on the circle x2 + y2 = a2, prove that angle QPR is a right angle.

If P is the point (x, y), the slope of the line QP is

m1 =
y − 0

x− (−a) =
y

x+ a
.

That of RP is

m2 =
y − 0
x− (a) =

y

x− a
.

Thus

m1m2 =
y2

x2 − a2
.

But, since P is on the circle, y2 = a2− x2 and consequently m1m2 = −1. From result (1.24)
this implies that QP and RP are orthogonal and that QPR is therefore a right angle. Note
that this is true for any point P on the circle.

1.4 Partial fractions

In subsequent chapters, and in particular when we come to study integration

in chapter 2, we will need to express a function f(x) that is the ratio of two

polynomials in a more manageable form. To remove some potential complexity

from our discussion we will assume that all the coefficients in the polynomials

are real, although this is not an essential simplification.

The behaviour of f(x) is crucially determined by the location of the zeroes of

its denominator, i.e. if f(x) is written as f(x) = g(x)/h(x) where both g(x) and

h(x) are polynomials,§ then f(x) changes extremely rapidly when x is close to
those values αi that are the roots of h(x) = 0. To make such behaviour explicit,

we write f(x) as a sum of terms such as A/(x− α)n, in which A is a constant, α is

one of the αi that satisfy h(αi) = 0 and n is a positive integer. Writing a function

in this way is known as expressing it in partial fractions.

Suppose, for the sake of definiteness, that we wish to express the function

f(x) =
4x+ 2

x2 + 3x+ 2

§ It is assumed that the ratio has been reduced so that g(x) and h(x) do not contain any common
factors, i.e. there is no value of x that makes both vanish at the same time. We may also assume
without any loss of generality that the coefficient of the highest power of x in h(x) has been made
equal to unity, if necessary, by dividing both numerator and denominator by the coefficient of this
highest power.
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in partial fractions, i.e. to write it as

f(x) =
g(x)

h(x)
=

4x+ 2

x2 + 3x+ 2
=

A1

(x− α1)n1
+

A2

(x− α2)n2
+ · · · .

(1.43)

The first question that arises is that of how many terms there should be on

the right-hand side (RHS). Although some complications occur when h(x) has

repeated roots (these are considered below) it is clear that f(x) only becomes

infinite at the two values of x, α1 and α2, that make h(x) = 0. Consequently the

RHS can only become infinite at the same two values of x and therefore contains

only two partial fractions – these are the ones shown explicitly. This argument

can be trivially extended (again temporarily ignoring the possibility of repeated

roots of h(x)) to show that if h(x) is a polynomial of degree n then there should be

n terms on the RHS, each containing a different root αi of the equation h(αi) = 0.

A second general question concerns the appropriate values of the ni. This is

answered by putting the RHS over a common denominator, which will clearly

have to be the product (x− α1)
n1 (x− α2)

n2 · · · . Comparison of the highest power
of x in this new RHS with the same power in h(x) shows that n1 + n2 + · · · = n.

This result holds whether or not h(x) = 0 has repeated roots and, although we

do not give a rigorous proof, strongly suggests the following correct conclusions.

• The number of terms on the RHS is equal to the number of distinct roots of

h(x) = 0, each term having a different root αi in its denominator (x− αi)
ni .

• If αi is a multiple root of h(x) = 0 then the value to be assigned to ni in (1.43) is
that of mi when h(x) is written in the product form (1.9). Further, as discussed

on p. 23, Ai has to be replaced by a polynomial of degree mi − 1. This is also
formally true for non-repeated roots, since then both mi and ni are equal to

unity.

Returning to our specific example we note that the denominator h(x) has zeroes

at x = α1 = −1 and x = α2 = −2; these x-values are the simple (non-repeated)
roots of h(x) = 0. Thus the partial fraction expansion will be of the form

4x+ 2

x2 + 3x+ 2
=

A1

x+ 1
+

A2

x+ 2
. (1.44)

We now list several methods available for determining the coefficients A1 and

A2. We also remind the reader that, as with all the explicit examples and techniques

described, these methods are to be considered as models for the handling of any

ratio of polynomials, with or without characteristics that make it a special case.

(i) The RHS can be put over a common denominator, in this case (x+1)(x+2),

and then the coefficients of the various powers of x can be equated in the
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numerators on both sides of the equation. This leads to

4x+ 2 = A1(x+ 2) + A2(x+ 1),

4 = A1 + A2 2 = 2A1 + A2.

Solving the simultaneous equations for A1 and A2 gives A1 = −2 and
A2 = 6.

(ii) A second method is to substitute two (or more generally n) different

values of x into each side of (1.44) and so obtain two (or n) simultaneous

equations for the two (or n) constants Ai. To justify this practical way of

proceeding it is necessary, strictly speaking, to appeal to method (i) above,

which establishes that there are unique values for A1 and A2 valid for

all values of x. It is normally very convenient to take zero as one of the

values of x, but of course any set will do. Suppose in the present case that

we use the values x = 0 and x = 1 and substitute in (1.44). The resulting

equations are

2

2
=
A1

1
+
A2

2
,

6

6
=
A1

2
+
A2

3
,

which on solution give A1 = −2 and A2 = 6, as before. The reader can
easily verify that any other pair of values for x (except for a pair that

includes α1 or α2) gives the same values for A1 and A2.

(iii) The very reason why method (ii) fails if x is chosen as one of the roots

αi of h(x) = 0 can be made the basis for determining the values of the Ai
corresponding to non-multiple roots without having to solve simultaneous

equations. The method is conceptually more difficult than the other meth-

ods presented here, and needs results from the theory of complex variables

(chapter 20) to justify it. However, we give a practical ‘cookbook’ recipe

for determining the coefficients.

(a) To determine the coefficient Ak , imagine the denominator h(x)

written as the product (x− α1)(x− α2) · · · (x− αn), with any m-fold

repeated root giving rise to m factors in parentheses.

(b) Now set x equal to αk and evaluate the expression obtained after

omitting the factor that reads αk − αk .

(c) Divide the value so obtained into g(αk); the result is the required

coefficient Ak .

For our specific example we find that in step (a) that h(x) = (x+1)(x+2)

and that in evaluating A1 step (b) yields −1 + 2, i.e. 1. Since g(−1) =
4(−1) + 2 = −2, step (c) gives A1 as (−2)/(1), i.e in agreement with our
other evaluations. In a similar way A2 is evaluated as (−6)/(−1) = 6.
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